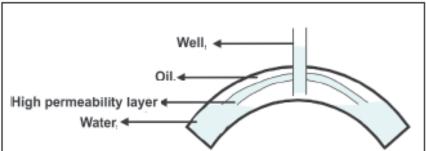
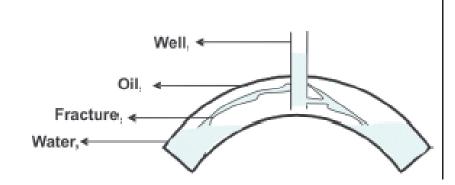


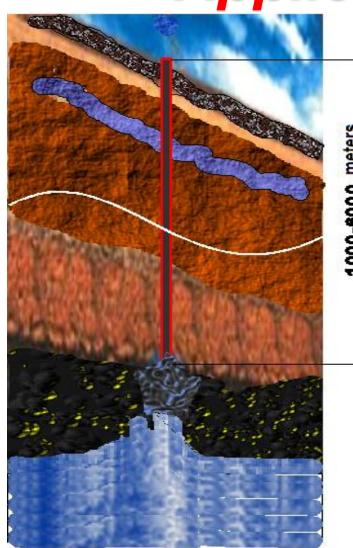
Water Shut-off Technology Using Chemical Injection


Water coning

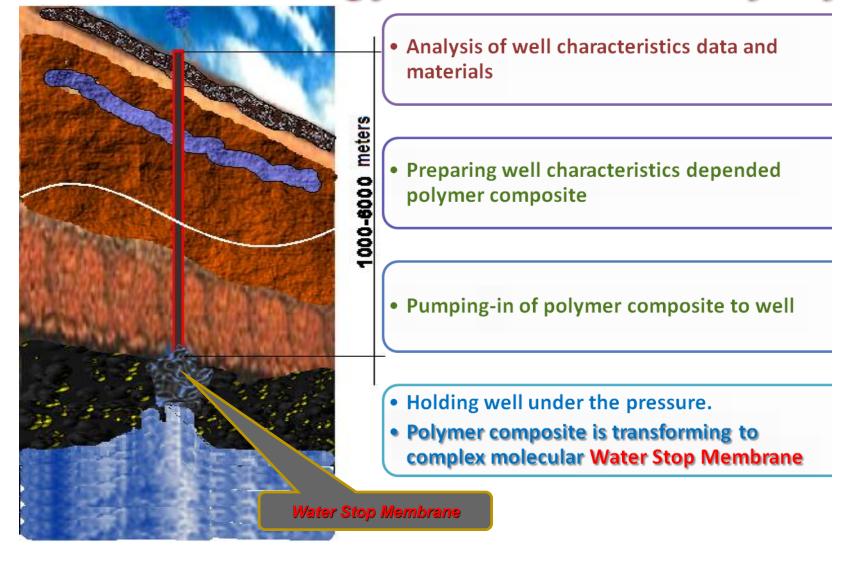

• Global increase of the water and oil contact

Depleted Water,
Base Oil-water contact

 Water arrives through a high permeability layer


IV. Water arrives through one or more fractures that connect the aquifer to the well

Application Experience

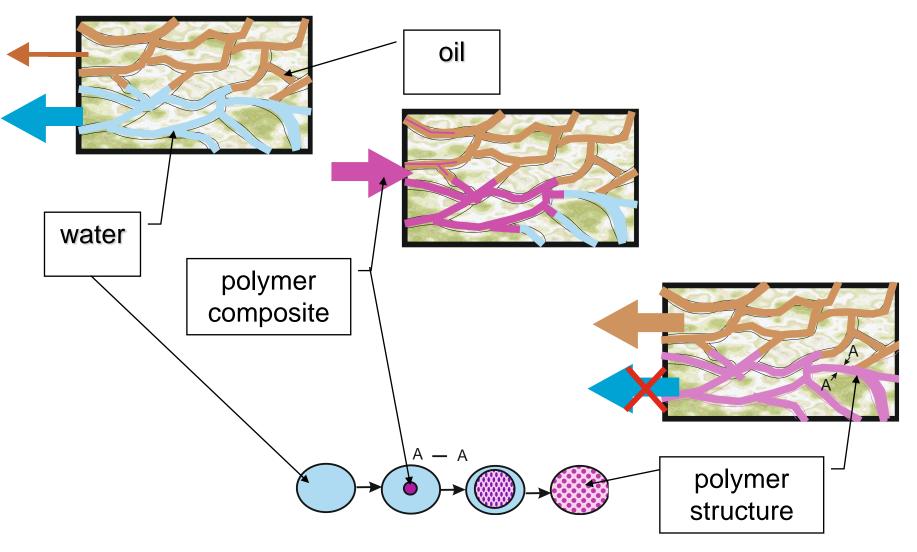

Well Depth range: from 1000m to 6000 m

Well Bottom Temperature range: from +60°C to +190°C

Well Bottom Pressure range: from 175psi to 18000psi

Technology Matter and Duty Cycle

Water Shut-off Technology

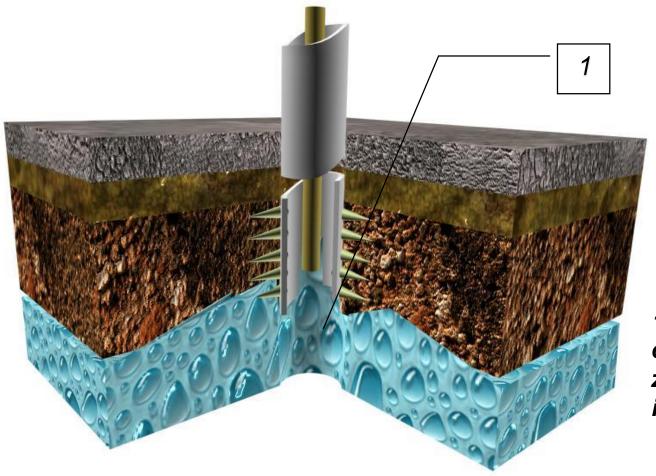

- Water Shut-off Technology is defined as operation that hinders water to reach and enter the production wells
- is protected by patents
- Technology is the injection operation of the polymer composite into the oil or gas well, based on its geographical properties
- Technology allows to insulate and liquidate the water flow of the oil and gas wells
- Technology helps increase **up to 35**% of oil and gas productivity on the wells, where **55%-75**% from the original geological reserves in the bowels of the earth is not extracted with existing methods of the exploitation

Effectiveness

18 years successfully implementations on the Russia, Ukraine and other countries.

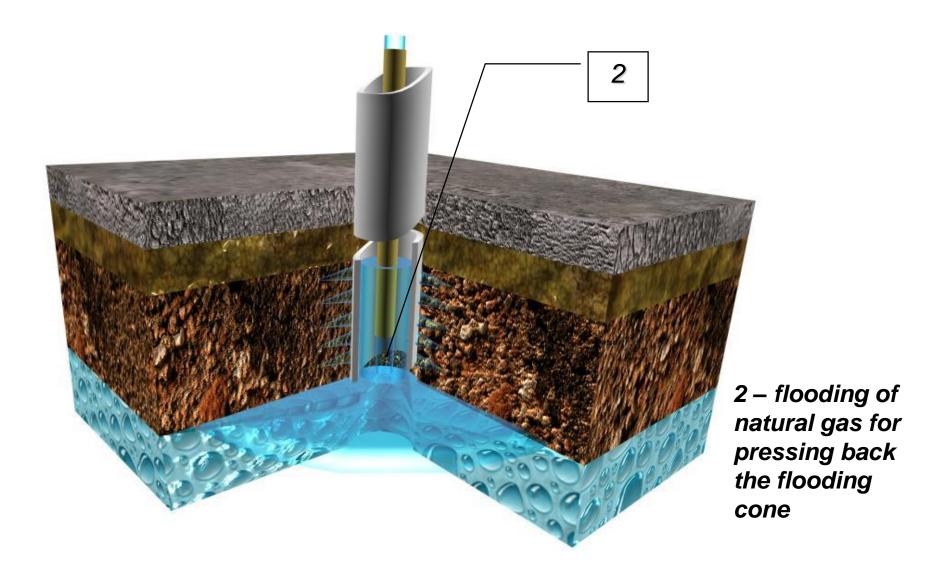
TEHNOLOGY OF ENHANCEMENT OF HYDROCARBON PRODUCTION WITH BLOCKING THE WATER INFLOWS

- Provides the selective isolation of layer's water of productive stratum with amine complexes that create with water the insoluble inorganic compounds, not reducing the efficiency of productive stratum.
- Technology is widely applied and recognized as one of the best in gas-condensate fields in Ukraine. During the use of technology more than 350 million cubic meters of gas and 358000 Barrels of liquid hydrocarbons have been produced.

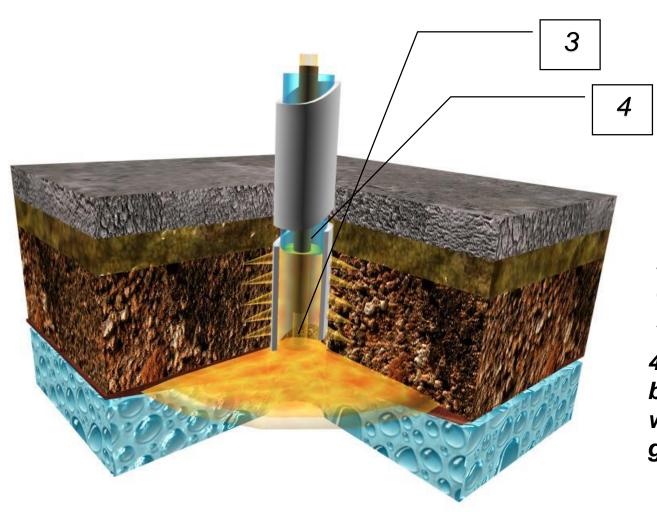

Water insulation processing **ADVANTAGES**

Technology allows to:

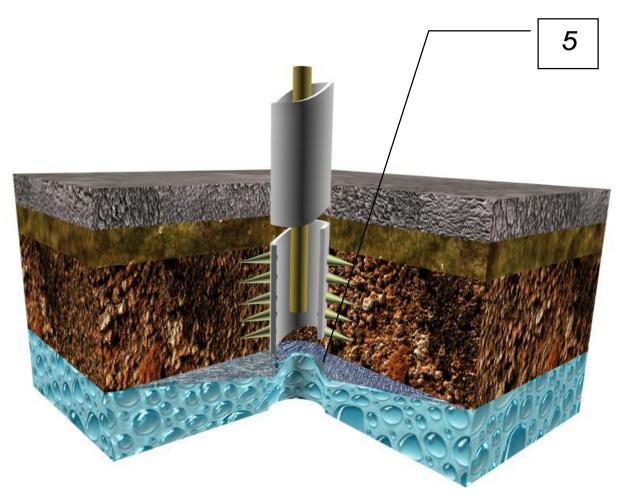
- create the indestructible barrier with help of crystalforming mixtures;
- increase output of hydrocarbons by changing the surfactant properties of rocks;
- used reagents are corrosion and environmentally safe.



Stages of technological process of isolation of water flow in productive stratum



1-lifting of the cone of water in zone of perforation interval



3-downloading of blocking solution;

4-pumping of blocking solution with a high pressure gas.

5-insulation barrier of the marble-like structure

 Results of application a new technology in the fields of Ukraine

THE TEST RESULTS ON FORMATION OF MULTILAYER WATER ISOLATION BARRIER

Field	Well	Q	_Oil (STB/	(D)	Water cut %		
		Before treatment	After treatment	Change (%)	Before treatment	After treatment	Change (%)
D	8	365	580	+59	87.5	51.2	-41
Bugrevatovsry	87	400	695	+74	98.2	85.0	-13

Results of technology's use in the oil and gas fields

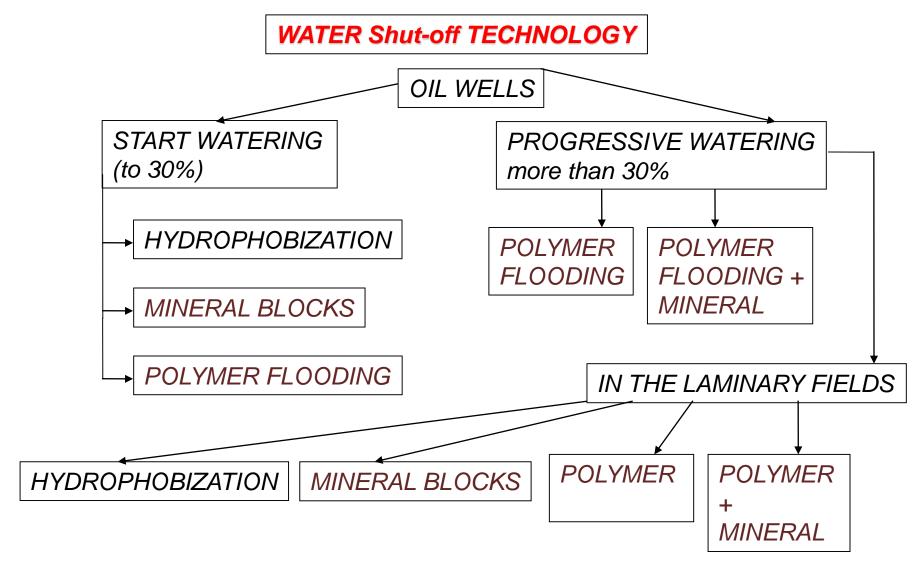
	Nº	_	Oil (STB/Da Gas (M3/Da	• /	Water cut %			
Field	Well s	Before After Change treatment treatment (%)		Before treatment	After treatment	Change (%)		
	17	458	549	+20	59.42	41.0	-31	
Yabl (Oil)	35	944	1057	+12	58.34	32.4	-44	
	84	822	972	+18	57.41	39.6	-31	
	715	837	929	+11	70.86	52.5	-26	
Var'egan (Oil)	293	1487	1592	+7	62.14	42.9	-31	
	619	1509	1780	+18	67.45	43.5	-36	
Dodlini- Dubnik	34	50	65	+30	99.0	79.2	-20	
(Oil)	69	86	107	+24	47.12	29.5	-37	
Jaroslav (Gas)	14	312000	327600	+5	25.4	14.1	-44	

Results of technology's use in the oil and gas fields

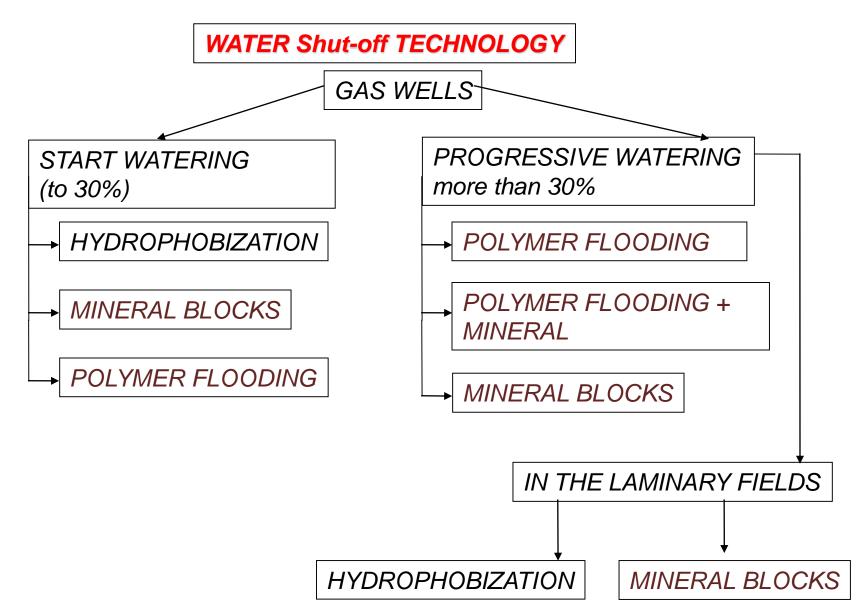
Nº Field Wel			Oil (STB/Da Gas (M3/Da	• •	Water cut %		
Field	Well s	Before treatment	After treatment	Change (%)	Before treatment	After treatment	Change (%)
Lelyaki (Oil)	152	858	1044	+22	57.41	23.12	-60
	942	1523	2052	+35	70.86	32.3	-54
Var'egan (Oil)	1159	2503	2746	+10	62.14	7.8	-87
	1240	1759	2009	+14	67.45	21.3	-68
Dodlini- Dubnik (Oil)	3A	501	551	+10	47.12	31.2	-34
Jaroslav (Gas)	12	387000	394000	+5	25.4	2.4	-91

Results of technology's use in China

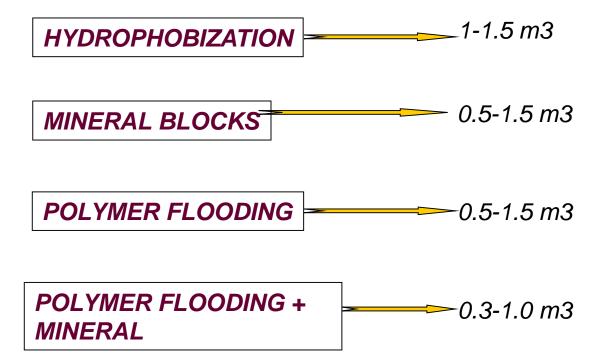
	Oil F	low Rate, STE	B/day	Water cut, %			
Well	Before Treatment	After Treatment	Change (%)	Before Treatment	After Treatment	Change (%)	
Xy 12-50	13	30	133	93	86	-8	
Xy 2-8	9	23	146	96.8	95.4	-1	
Xy 7-33	10	36	264	98.3	94.2	-4	
Min 1-23	4	31	617	98.4	93.5	-5	


Treatment of the Well-bottom Area with hydrofobizators (HV) is made in oil and gas well in the next cases:

- Abruptly decreasing of well productivity in the initial period of exploitation;
- Increasing of water flows under constant field pressure;
- Water cut is more than 30%
- Reservoirs with non-uniform permeability and heterogeneous reserves of hydrocarbons.



Mall damanit	Well production rate before treatment			Well production rate after treatment			Time effect
Well, deposit	Q _{gaz} Km³/d	Q _{oil} , Ton/d	water coefficient lit/ton.km3	Q _{gaz} Km³/d	Q _{oil} , Ton/d	water coefficient lit/ton.km3	months
65 Timofeevka polymer composite	130	28	550	168	34	5.4	5
65 Timofeevka hydrofobizator	130	29.9	565	180	36.6	3.8	6
72 Timofeevka polymer composite	80	18	570	120	28.2	5.1	6
72 Timofeevka hydrofobizator	75	17.1	450	95	25.7	4.5	7
79 Timofeevka polymer composite	68	15.3	700	112	38	2.4	4
79 Timofeevka hydrofobizator	65	14.9	720	90	26.9	0.5	7
76 Timofeevka polymer composite	160	39.2	55	190	41.9	11	6
76 Timofeevka hydrofobizator	175	52.9	100	210	68	3	7
85 Yablynovka polymer composite	28	1.2	97	93	3.1	6.3	4
85 Yablynovka hydrofobizator	25	0.9	99	50	2.7	6.5	6

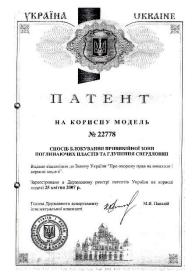


WATER Shut-off TECHNOLOGY

VOLUME INJECTING FOR 1 M PERFORATION

EFFECTIVE METODS

METODS	Water Cut, %				
BASIS (OIL-CEMENT)	1 – 25				
HYDROPHOBIZATION	25-50				
MINERAL BLOCKS	30 – 50				
POLYMER	50 – 70				
POLYMER + MINERAL	70 – 100				



Thank You!